Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence.
نویسندگان
چکیده
BACKGROUND The neural mechanisms of anesthetic vapors have not been studied in depth. However, modeling and experimental studies on the intravenous anesthetic propofol indicate that potentiation of γ-aminobutyric acid receptors leads to a state of thalamocortical synchrony, observed as coherent frontal alpha oscillations, associated with unconsciousness. Sevoflurane, an ether derivative, also potentiates γ-aminobutyric acid receptors. However, in humans, sevoflurane-induced coherent frontal alpha oscillations have not been well detailed. METHODS To study the electroencephalogram dynamics induced by sevoflurane, the authors identified age- and sex-matched patients in which sevoflurane (n = 30) or propofol (n = 30) was used as the sole agent for maintenance of general anesthesia during routine surgery. The authors compared the electroencephalogram signatures of sevoflurane with that of propofol using time-varying spectral and coherence methods. RESULTS Sevoflurane general anesthesia is characterized by alpha oscillations with maximum power and coherence at approximately 10 Hz, (mean ± SD; peak power, 4.3 ± 3.5 dB; peak coherence, 0.73 ± 0.1). These alpha oscillations are similar to those observed during propofol general anesthesia, which also has maximum power and coherence at approximately 10 Hz (peak power, 2.1 ± 4.3 dB; peak coherence, 0.71 ± 0.1). However, sevoflurane also exhibited a distinct theta coherence signature (peak frequency, 4.9 ± 0.6 Hz; peak coherence, 0.58 ± 0.1). Slow oscillations were observed in both cases, with no significant difference in power or coherence. CONCLUSIONS The study results indicate that sevoflurane, like propofol, induces coherent frontal alpha oscillations and slow oscillations in humans to sustain the anesthesia-induced unconscious state. These results suggest a shared molecular and systems-level mechanism for the unconscious state induced by these drugs.
منابع مشابه
Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth
Recent studies of propofol-induced unconsciousness have identified characteristic properties of electroencephalographic alpha rhythms that may be mediated by drug activity at γ-aminobutyric acid (GABA) receptors in the thalamus. However, the effect of ketamine (a primarily non-GABAergic anesthetic drug) on alpha oscillations has not been systematically evaluated. We analyzed the electroencephal...
متن کاملInvestigating The Effects of Modem Electromagnetic Waves (2.4 GHz) on Electroencephalogram
With respect to the dramatic increasing use of electronically communicators and wireless modems, concerns have been raised about the possible effects of emitted electromagnetic radiation on human brain. In this paper, the effects of high-frequency wireless modem waves on the brain signal are investigated. To this end, the Electroencephalograph (EEG) recording of 15 volunteers is examined in fou...
متن کاملThe Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia.
BACKGROUND Anaesthetic drugs act at sites within the brain that undergo profound changes during typical ageing. We postulated that anaesthesia-induced brain dynamics observed in the EEG change with age. METHODS We analysed the EEG in 155 patients aged 18-90 yr who received propofol (n=60) or sevoflurane (n=95) as the primary anaesthetic. The EEG spectrum and coherence were estimated throughou...
متن کاملAcute Effects of Inhalants on Alterations of Quantitative Electroencephalogram
Background and purpose: Inhaling substances are hydrocarbons that are converted to gas at room temperature and enter the lungs through the nose and mouth and then our brain. Neurological and psychiatric effects are reported following inhalation, however, there are few studies about acute effect of inhalant on brain electroencephalogram (EEG). Materials and methods: This observational study wa...
متن کاملA comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis.
BACKGROUND Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1 to 1 Hz), delta (1 to 4 Hz), propofol-induced alpha (8 to 12 Hz), and dexmedetomidine-induced spindle (12 to 16 Hz) oscillations. However, these drugs have different molecular mechanisms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 121 5 شماره
صفحات -
تاریخ انتشار 2014